Comparing food safety management systems between food processing companies

dr. ir. Liesbeth Jacxsens
Department of Food Safety and Food Quality, Faculty of BioScience Engineering, University of Ghent

dr. Pieter Nel Luning
Product Design and Quality Management Group, Department of Agrotechnology and Food Sciences, Wageningen University

Introduction

Food Safety Requirements:
EU Legislation, Belgium legislation, CODEX, PRP/GMP, HACCP, BRC, ISO22000, ...

Development and implementation of a Food Safety Management System in a specific SME/industrial company in the agri-food chain

Safe food products?
Introduction

EU Research project PathogenCombat (www.pathogencombat.com)

Diagnostic instrument (FSMS-DI) for food processing companies to measure:
- the performance of current FSMS (core control activities and core assurance activities)
- the performance of food safety output
- in relation to the context of a company
- standing apart from auditing/inspection of implemented commercial QA standard/legislation!

International symposium: 17th Nov 2010 Brussels
measuring food safety and comparing self checking systems

<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>FSMS = Control + Assurance</th>
<th>Food safety output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product characteristics</td>
<td>Core assurance activities</td>
<td>Product safety</td>
</tr>
<tr>
<td>Process characteristics</td>
<td>Setting system requirements</td>
<td>Validation</td>
</tr>
<tr>
<td>Organisational characteristics</td>
<td>Verification</td>
<td>Documentation and record keeping</td>
</tr>
<tr>
<td>Environmental characteristics</td>
<td>Core control activities</td>
<td>Preventive measures design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervention processes design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring system design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation control strategies</td>
</tr>
</tbody>
</table>

International symposium: 17th Nov 2010 Brussels
measuring food safety and comparing self checking systems
Introduction - hypothesis

INTRODUCTION

- FSMS-DI – content (58 indicators)

Part I: Introductory section for Food Safety Management System (FSMS)
A. Introduction questions (1-11)
B. Selection of Representative Production Unit (RPU) for self-assessment (12-20)

Part II: assessment of contextual factors
A. Assessment of product characteristics (A1-3)
B. Assessment of process characteristics (B4-6)
C. Assessment of organisation characteristics (C7-13)
D. Assessment of chain environment characteristics (D14-17)

Part III: assessment of core safety control activities
E. Assessment of preventive measures design (E18-23)
F. Assessment of intervention processes design (F24-27)
G. Assessment monitoring system design (G28-34)
H. Assessment of operation of preventive measures, intervention process and monitoring systems (H35-41)

Part IV: assessment of core assurance activities
I. Assessment of setting system requirements activities (I42-43)
J. Assessment validation activities (J44-46)
K. Assessment of verification activities (K47-48)
L. Assessment of documentation and record-keeping to support food assurance (L49-50)

Part V: assessment of food safety performance
M. EXTERNAL Food Safety Performance (M51-54)
N. INTERNAL Food Safety Performance (N55-57)
Introduction

• FSMS-DI – indicators translated into grids

1. In which situation would you place the risk of your raw materials in your RIPU representative production unit?

<table>
<thead>
<tr>
<th>Situation 1</th>
<th>Situation 2</th>
<th>Situation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Raw material is not associated with high initial microbial levels and pathogens.</td>
<td>- Raw material is not associated with high initial microbial levels and pathogens, which potentially can affect safety of final product.</td>
<td>- Raw material is not associated with high initial microbial levels and pathogens, which potentially can affect safety of final product.</td>
</tr>
<tr>
<td>- Storage at or below room temperature conditions.</td>
<td>- Storage on or below room temperature, but not specific microbial requirements.</td>
<td>- High requirements on storage conditions and shelf control.</td>
</tr>
</tbody>
</table>

Supporting information for differentiating situation 2 and 3:
- When your raw material are associated with high initial microbial levels and/or pathogens, and if they are stored below room temperature and not specific microbial requirements.
- Crucial for level 3 are the high requirements on storage are crucial for prevention of undesired growth of microorganisms (including pathogens).

International symposium: 17th Nov 2010 Brussels
measuring food safety and comparing self checking systems

Introduction

• Indicators are organised in spiderwebs
• Results can be applied as internal audit
• Short/mid/long term improvements of FSMS

International symposium: 17th Nov 2010 Brussels
measuring food safety and comparing self checking systems
Introduction

- FSMS-DI:
 - Tool available for PROCESSING FOOD INDUSTRY
 - On line www.pathogencombat.com – on paper
 - Dutch, French, English, Spanish, Greek
 - Data companies in database of WU
 - Profiling countries – sectors – interventions – …
 - Applied in Belgium study (june 2010 – october 2010)
 - Cooperation FAVV – UGent – WU

Belgian study

- Quantitative study in Belgian food/feed processing companies
- Different sectors - different size
- With/without certified self checking systems: can we see a difference in level of food safety and level of implemented FSMS?

- 200 companies invited → 82 respondents
- 50% certified for self checking
- 90% certified for commercial system (BRC, IFS, GMP+, etc)
- Only 3 companies without any certificate …
Belgian study

BIAS in our study …

- Difficult to get companies involved
- Involved companies assumed to have higher level in FSMS due to (multiple) certification
- Involvement of non certified companies?

Questions:

- Can we identify clusters/profiles in FSMS performance in food processing companies in Belgium?
- Do we see a difference in level of performance of food safety output (low – moderate – good)?
- Do we see a difference in level of performance of actual implemented FSMS (basic – generic – tailored/scientific underpinned)?

Characterisation of respondents

<table>
<thead>
<tr>
<th>Production sector</th>
<th>Micro and small (2-9 & 10-49)</th>
<th>Medium (50-249)</th>
<th>Large (> 249)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self checking system</td>
<td>Not certified</td>
<td>Certified</td>
<td>Not certified</td>
<td>Certified</td>
</tr>
<tr>
<td>Meat products</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Red meat</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Slaughterhouses/cutting</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Poultry</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ready-to-eat meals</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dairy</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fish processing</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vegetables, fruits, potatoes</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Industrial bakery</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brewery</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Feed</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
Results - database

Etc….

Results - Food safety output?

- Overall: moderate (overall score 2) to good (overall score 3) performance of FS output for all Belgian food/feed processing companies

<table>
<thead>
<tr>
<th>n</th>
<th>Overall score for food safety output</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (18%)</td>
<td>Good</td>
</tr>
<tr>
<td>57 (70%)</td>
<td>Moderate-good</td>
</tr>
<tr>
<td>9 (11%)</td>
<td>Moderate</td>
</tr>
<tr>
<td>1 (±1%)</td>
<td>Moderate-low</td>
</tr>
</tbody>
</table>
Results - Clusters?

- Individual database
- Hierarchical cluster analysis
- Dendograms
- 5 clusters could be defined

Results - identification of clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of companies</th>
<th>% certified for self checking</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster I</td>
<td>38</td>
<td>60</td>
<td>Animal products</td>
</tr>
<tr>
<td>Cluster II</td>
<td>7</td>
<td>71</td>
<td>Non animal products (FVP, candies, brewery, feed, bakery)</td>
</tr>
<tr>
<td>Cluster III</td>
<td>15</td>
<td>20</td>
<td>Animal products</td>
</tr>
<tr>
<td>Cluster IV</td>
<td>18</td>
<td>44</td>
<td>Mixture of companies but no intervention possible in process</td>
</tr>
<tr>
<td>Cluster V</td>
<td>4</td>
<td>50</td>
<td>Mixture</td>
</tr>
</tbody>
</table>

73% of all companies and 76% certified SC
Cluster I: 97% commercial, 60% self checking

Cluster III: 90% commercial, 20% self checking

* Cluster I and Cluster III: all animal products

International symposium: 17th Nov 2010 Brussels measuring food safety and comparing self checking systems
Belgian results in the European context

- Survey also conducted in Spain, Greece, the Netherlands
- Outside Europe Japan, Philippines

- Differences with Belgium?
 - Lower food safety output ➔ internal evaluation of food safety output (e.g. product sampling, judgement criteria, non conformities) ➔ more severe internal judgement by Belgian companies
 - Core assurance activities (validation and verification) ➔ elaborated at higher level in Belgian companies
 - Belgian companies high level of performance of FSMS (more advanced, tailored and scientific underpinned)
 - Awareness of importance of food safety and FSMS?
 - Drive of legislation / self checking systems?

Example of lowest cluster in European study (no Belgian companies...)

<table>
<thead>
<tr>
<th>Food Safety output</th>
<th>Product and process characteristics</th>
<th>Organisational and chain characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design of control activities</th>
<th>Actual operation of control activities</th>
<th>Assurance activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Overall Belgian food processing companies demonstrated good performance of food safety output and rather advanced level of food safety management systems

- To be continued…
 - Extended to other actors in the chain (e.g. primary production)
 - Context ➔ aspect of globalisation will be included
 - Focus also on mycotoxins and pesticide residues
 - Veg-i-Trade
 - www.veg-i-trade.org

Acknowledgements

- FAVV : Jacques Inghelram, Herman Diricks
- WU : Pieternel Luning, Klementina Kirezieva
- UGent : Mieke Uyttendaele
- Sector organisations

- Responding companies !!