DOSAGE DE L’HISTAMINE
DANS DES ECHANTILLONS DE POISSONS PAR HPLC–UV

Version
02

Date d’application
2012-04-06

Rédaction par :
Ir M. Evrard, Responsable technique ; 04-04-2012

Vérification par :
Ing. M. Aubry, Responsable de la Qualité ; 2012-04-06

Autorisation de publication par :
Ir P. Genot, Manager LFSAL

Gestion et localisation de la version valide :
Serveur M du laboratoire

Destinataires :
Membres du personnel de la section Analyses Spéciales

Mots clefs :
Histamine ; poissons ; Hista ; HPLC
Aperçu des modifications

<table>
<thead>
<tr>
<th>Révision par/date</th>
<th>Motif de la révision</th>
<th>Partie du texte/portée de la révision</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Evrard</td>
<td>Amélioration globale + nouveau template</td>
<td>tout</td>
</tr>
<tr>
<td>04-04-2012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*L’écart entre la date actuelle et celle de la dernière révision ne peut pas dépasser 5 ans.

Les modifications par rapport à la version précédente sont reprises en rouge.

Si à cause de l’ampleur des modifications, le texte n’est plus lisible en utilisant les marquages, les adaptations ne sont pas marquées dans la nouvelle version.

Cela est mentionné dans l’historique du document.
DOSAGE DE L’HISTAMINE DANS DES ECHANTILLONS DE POISSONS PAR HPLC-UV

TABLE DES MATIERES

1 OBJECTIF ... 4
2 CHAMP D’APPLICATION ... 4
3 DOCUMENTS LEGAUX ET NORMATIFS ... 5
4 DEFINITIONS ET ABBREVIATIONS .. 5
5 PRINCIPE .. 5
6 CARACTERISTIQUES DE PERFORMANCE ... 6
7 CONSIGNES DE SECURITE ET MESURES SPECIFIQUES .. 6
8 REACTIFS .. 6
9 APPAREILLAGE .. 6
10 METHODE .. 7
 10.1 PRELEVEMENT DES ECHANTILLONS .. 7
 10.2 RECEPTION, STOCKAGE ET DISTRIBUTION DES ECHANTILLONS 7
 10.3 PREPARATION DES REACTIFS .. 7
 10.3.1 SOLUTION D’HCl 0,1 mol/l .. 7
 10.3.2 SOLUTION DE HClO4 1 mol/l ... 7
 10.3.3 SOLUTION STOCK D’HISTAMINE ... 8
 10.3.4 Solution Stock de Diméthylbiguanide ... 8
 10.4 PREPARATION DE LA COURBE D’ETALONNAGE .. 8
 10.4.1 Solutions de la courbe d’étalonnage (5 levels) .. 8
 10.5 TRAITEMENT DES ECHANTILLONS ... 9
 10.5.1 Extraction .. 9
 10.6 PREPARATION DES PHASES MOBILES ... 9
 10.7 CONDITIONS EXPERIMENTALES .. 9
 10.7.1 Conditions chromatographiques ... 9
 10.8 SEQUENCE D’ANALYSE .. 11
11 CONTROLE DE LA QUALITE .. 11
12 CALCUL ET RAPPORTAGE .. 12
 12.1 EVALUATION DES MESURES ... 12
 12.1.1 La stabilité du système ... 12
 12.1.2 Droite d’étalonnage .. 12
 12.1.3 Vérification de la dérive, du blanc et du FAPAS (ou du blanc dopé) 12
 12.2 EXPRESSION DES RESULTATS .. 13
13 REFERENCE AUX PROCEDURES, INSTRUCTIONS, DOCUMENTS, FORMULAIRES OU LISTES Y AFFERENTS ... 13
ANXEEZE ... 13

LAB 23 I-MET-025 B – HISTA - HPLC - v.02 – 2012-04-xx - 3/13
1 Objectif

Cette méthode est destinée à identifier et à quantifier l’histamine dans les échantillons de poissons par HPLC-UV.

2 Champ d'application

L’histamine est une amine biogène produite après la mort du poisson sous l’action de certaines bactéries. Ces bactéries produisent une enzyme qui va transformer l’histidine – acide aminé présent à forte teneur dans certains poissons – en histamine. L’histidine peut se trouver sous forme libre mais aussi sous forme liée dans les pigments tels que l’hémoglobine et la myoglobine.

Les microorganismes responsables de la formation de l’histamine se développent principalement à des températures supérieures à 7-10°C dans les ouïes et les viscères du poisson. Cependant, de récentes recherches ont montré que certaines bactéries productrices d’histamine étaient actives entre 0 et 5°C.

Les conditions nécessaires à la formation de l’histamine sont :

- Présence en quantité élevée d’histidine libre
- Présence en nombre important des bactéries produisant l’histidine décarboxylase

Les espèces, les plus riches en histidine et présentant un plus grand risque de contenir de l’histamine sont :

- Les Scombridés : thon, maquereau,…
- Les Clupéidés : sardine, hareng,…
- Les Engraulidés : anchois,…
- L’espadon, le marlin,…

Les normes en vigueur sont :

- n = 9, c= 2, m = 100 mg/kg et M = 200 mg/kg pour les produits frais
- n = 9, c= 2, m = 200mg/kg et M = 400 mg/kg pour les produits saumurés
- si n = 1, pour poissons frais, M = 200 mg/kg
3 Documents légaux et normatifs

<table>
<thead>
<tr>
<th>Norme/Fil conducteur</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Règlement 2073/2005 (annexe 1, chapitre 1 : 1.2.5 et 1.2.6) et sa modification (voir Règlement 1441/2007 de la Commission du 05/12/2007)</td>
<td>Tout</td>
</tr>
</tbody>
</table>

4 Définitions et abréviations

<table>
<thead>
<tr>
<th>Terme</th>
<th>Origine de la définition</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td></td>
<td>mg/kg ou µg/g</td>
</tr>
<tr>
<td>HPLC</td>
<td></td>
<td>chromatographie liquide haute performance</td>
</tr>
<tr>
<td>DAD</td>
<td></td>
<td>diode array detector</td>
</tr>
<tr>
<td>ACN</td>
<td></td>
<td>acétonitrile</td>
</tr>
<tr>
<td>MeOH</td>
<td></td>
<td>méthanol</td>
</tr>
<tr>
<td>HA2Cl</td>
<td></td>
<td>Histamine dihydrochloride</td>
</tr>
<tr>
<td>DBG</td>
<td></td>
<td>1,1-DiméthylBiGuanide hydrochloride</td>
</tr>
<tr>
<td>tpm</td>
<td></td>
<td>tours par minute</td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td>temps de rétention diamètre interne</td>
</tr>
<tr>
<td>i.d.</td>
<td></td>
<td>Diamètre interne</td>
</tr>
<tr>
<td>Tp-PO4</td>
<td></td>
<td>tampon phosphate</td>
</tr>
</tbody>
</table>

5 Principe

L'histamine est extraite d'un échantillon de poisson à l'aide d'une solution d'acide perchlorique. Les extraits sont combinés avec le standard de référence chromatographique (DBG). Ils sont filtrés sur filtres PTFE et analysés par HPLC-UV. La détection se fait à l'aide d'un détecteur UV.
6 Caractéristiques de performance

Se référer au dossier de validation I-MET-025B-AS-Validation-Hista-HPLC.

7 Consignes de sécurité et mesures spécifiques

Afin d'éviter toute contamination, le port de gants est vivement conseillé ainsi que l'utilisation de hotte bien ventilée durant toute la manipulation.

L'élimination des solvants et des solutions se fait dans les bidons prévus à cet effet en suivant les recommandations d'usage au laboratoire.

Spécificités :

- Eviter tout contact avec les yeux, la peau et les vêtements.
- Se laver les mains à l'eau et au savon après la manipulation du produit et avant de manger, de boire.
- Ne pas rejeter, dans toute source d’approvisionnement en eau, d’effluents contenant ce produit.
- Entreposer ce produit au frais et au sec, à l’écart de la nourriture humaine ou animale et des boissons.

8 Réactifs

Sauf mention contraire, les solutions restent valables jusqu’à ce que les critères de validité de l’analyse soient respectés.

- Acétonitrile de qualité HPLC (Biosolve ou équivalent)
- Méthanol de qualité HPLC (Fisher Scientific ou équivalent)
- HClO₄ 60 % (Normapur VWR ou équivalent)
- Eau ultrapure de type I à 18,2 MΩ.cm
- HCl 1mol/l (Titripack, Merck ou équivalent)
- KH₂PO₄ anhydre pour analyse (Merck ou équivalent)
- K₂HPO₄ pour analyse (Merck ou équivalent)
- Histamine dihydrochloride (Sigma Life Sciences, n° CAS : 56-92-8)
- 1,1-diméthylbiguanide hydrochloride (Aldrich Chemistry, n° CAS : 1115-70-4)
- Sodium 1-decane-sulfonate (Sigma Life Sciences, n° CAS : 13419-61-9)

9 Appareillage

- Tubes Falcon® de 50 ml
- Ballons jaugés en verre fumé de 50 ml et de 100ml avec bouchons rôdés
- Ballons jaugés en verre de 1000 et 2000 ml
- Entonnoirs
- Seringues en plastique de 5 ml avec Luer-lock
• Filtres à seringue Ø 25 mm, PTFE, 0,45 µm
• Vials en verre fumé
• Vials en verre fumé de 10 ml à sertir
• Micropipettes et tips
• Seringue Hamilton de 500 µl
• Béchers en verre
• pH-mètre
• Pipettes volumétriques en verre
• Balance analytique et microbalance
• Centrifugeuse réfrigérée à 4°C
• Diluteur automatique
• Mixer de cuisine
• Pipette Pasteur
• Vortex
• 1 colonne chromatographique Luna Phenomenex, C18(2), 250 mm x 4,6 mm i.d. avec un diamètre des particules de 5 µm, un diamètre de pore de 100 Å, couplée à une pré-colonne C18 (2), 4 mm x 3 mm i.d.
• Chaîne HPLC Hitachi avec détection UV-DAD pilotée par le programme EZChrom Elite.

10 Méthode

Les dilutions et la réalisation de la droite d’étalonnage se font au diluteur.

10.1 Prélèvement des échantillons
Les échantillons sont prélevés par le demandeur dans des sacs étanches.

10.2 Réception, stockage et distribution des échantillons
Les échantillons sont réceptionnés, inscrits au LIMS et confiés à la section qui les stocke au congélateur à minimum – 15°C dans le compartiment réservé à cette analyse.

10.3 Préparation des réactifs

10.3.1. Solution d'HCl 0,1 mol/l
Dans un ballon jaugé de 100 ml contenant de l'eau ultrapure :
 o Ajouter 10 ml d'HCl 1 mol/l avec une pipette en verre.
 o Compléter délicatement avec de l'eau ultrapure jusqu’au trait de jauge.
 o Homogénéiser ➔ solution HCl 0,1 mol/l.

10.3.2. Solution de HClO₄ 1 mol/l
Dans un ballon jaugé de 100 ml ajouter 11,11 ml d’HClO₄ 60 % :
 o Mettre au trait à l’aide d’eau ultrapure.
 o Homogénéiser ➔ solution HClO₄ 1 mol/l.
10.3.3. Solution Stock d’Histamine
Dans un jaugé en verre fumé de 100 ml :
 o Peser 165,6 mg d’HA2Cl (pуретé ≥ 99%).
 o Dissoudre et porter au trait dans 100 ml d’HCl 0,1 mol/l.
 o Secouer solution stock d’histamine (=1000 µg/ml).

10.3.4. Solution Stock de Diméthylbiguanide
Dans un vial en verre fumé de 100 ml :
 o Peser 128,2 à 0,1 mg près mg de DBG.
 o Dissoudre et porter au trait dans 100 ml d’HCl 0,1 mol/l.
 o Secouer solution stock de diméthylbiguanide (=1000 µg/ml).

Remarque : Ces deux solutions Stock sont stables pendant 3 mois si elles sont conservées à + 4°C.

10.3.5. Tampon PO₄ (Phase mobile B)
- Peser à 0,01 g près 2,18 g de K₂HPO₄.
- Peser à 0,01 g près 1,70g de KH₂PO₄.
- Peser à 0,01 g près 0,49 g de Sodium 1-decane-sulfonate.
- Dissoudre dans un jaugé de 1L avec de l’eau ultrapure.
- Amener au trait avec de l’eau ultrapure.
- Vérifier et ajuster le pH à 6,9 à l’aide d’HCl 0,1 M Vérifier le ph à 6,9.

10.4 Préparation de la courbe d’étalonnage
10.4.1 Solutions de la courbe d’étalonnage (5 levels)
- L₅ = 55,4 µg/ml (ou 554 µg/g) :
 o Laisser la solution stock d’histamine revenir à température ambiante.
 o Utiliser le diluteur (programme HISTA DROITE) avec la solution stock à 1000 µg/ml d’histamine et diluer avec HClO,1 mol/l dans un vial fumé de 10ml.
 o Ajouter 25 µl de solution stock DBG 1000 µg/ml (µg/g).

 - L₄ = 27,7 µg/ml (ou 277 µg/g)
 Procéder de la même manière qu’en L₅ en diluant 2X avec HCl 0,1 M la solution L₅, ajouter 25 µl de DBG.

 - L₃ = 13,9 µg/ml (ou 138,5 µg/g)
 Procéder de la même manière qu’en L₄, en diluant 2X avec HCl 0,1 M la solution L₄, ajouter 25 µl de DBG.

 - L₂ = 6,9 µg/ml (ou 69,3 µg/g)
 Procéder de la même manière qu’en L₃, en diluant 2X avec HCl 0,1 M la solution L₃, ajouter 25 µl de DBG.

 - L₁ = 3,5 µg/ml (ou 34,6 µg/g)
Procéder de la même manière qu'en L1, en diluant 2X avec HCl 0,1 M la solution L2, ajouter 50 µl de DBG.

10.5 Traitement des échantillons
10.5.1 Extraction
- Hacher finement environ 100 g de poisson et homogénéiser au mixer.
- Peser environ exactement 5,00 g de l'échantillon dans un tube Falcon® de 50 ml.
- Ajouter 15 ml d'HClO₄ 1 mol / l
- Vortexer.
- Centrifuger à 4000 tpm pendant 10 minutes à 4°C.
- Récupérer le surnageant dans un jaugé en verre fumé de 50 ml (au final, il y a +/- 45ml dans le jaugé).
- Ajouter 250 µl de la solution stock de DBG à 1000 µg/ml (ce qui correspond à une concentration de 5 µg/ml) dans chaque échantillon y compris le blanc.
- Amener au volume avec de l'eau ultrapure.
- agiter.
- Filtrer une aliquote de l'échantillon sur filtre PTFE et mettre en vial.
- Injecter.

10.6 Préparation des phases mobiles
Filled

Phase D
Acétonitrile de qualité HPLC

Phase B
Mélange de Tp-PO₄ et de Méthanol pour HPLC dans la proportion volume-volume 85:15

10.7 Conditions expérimentales
10.7.1 Conditions chromatographiques
- Software Ezchrom Elite : projet Histamines
- Injection automatique de 20 µl
- Colonne : 1 colonne : Luna C18 (2), 250 x 4,6 mm i.d. (Phenomenex), couplé à une pré-colonne C18 (2), 4 x 3 mm i.d (Phenomenex)
- Phase mobile : D : ACN
 B : Tp-PO₄/ Méthanol (85:15 ; v/v)
- Température colonne : 30°C
- Les vials en attendant l’injection sont maintenus à 10°C (Autosampler thermostatisé)
- Détecteur UV positionné à λ = 214 nm
10.7.2 Conditionnement
Pour conditionner la colonne, la méthode **ConditHista** est utilisée avant chaque séquence :

<table>
<thead>
<tr>
<th>Tps (min.)</th>
<th>B : TpPO₄ (85/15)</th>
<th>D : ACN</th>
<th>Flux : (ml/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
<td>100%</td>
<td>0,25</td>
</tr>
<tr>
<td>20</td>
<td>95%</td>
<td>5%</td>
<td>0,5</td>
</tr>
<tr>
<td>60</td>
<td>88%</td>
<td>12%</td>
<td>1,0</td>
</tr>
<tr>
<td>240</td>
<td>88%</td>
<td>12%</td>
<td>1,0</td>
</tr>
</tbody>
</table>

10.7.3 Analyse
La méthode **Histamine** de l'HPLC utilisée :

<table>
<thead>
<tr>
<th>Tps (min.)</th>
<th>B : TpPO₄ / MeOH (85/15)</th>
<th>D : ACN</th>
<th>Flux : (ml/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88%</td>
<td>12%</td>
<td>1,0</td>
</tr>
<tr>
<td>6</td>
<td>82%</td>
<td>18%</td>
<td>1,0</td>
</tr>
<tr>
<td>25</td>
<td>88%</td>
<td>12%</td>
<td>1,0</td>
</tr>
</tbody>
</table>

10.7.4 Rinçage
Après chaque séquence d'analyse, il est conseillé de procéder à un rinçage du système et de la colonne.

Pour ce faire, utiliser la méthode **rinçeHista** se trouvant dans les méthodes et située dans le projet Histamine de l'HPLC.

Le rinçage se déroule comme suit :

<table>
<thead>
<tr>
<th>Temps (min.)</th>
<th>A : eau ultrapure</th>
<th>B : TpPO₄/MeOH (85/15)</th>
<th>D : ACN</th>
<th>Flux : (ml/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
<td>88%</td>
<td>12%</td>
<td>1,0</td>
</tr>
<tr>
<td>20</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>1,0</td>
</tr>
<tr>
<td>120</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Remarque : Cette étape n'est pas obligatoire si l'appareil est utilisé le lendemain pour la même analyse.
10.8 Séquence d'analyse

- ACN/H_2O 50 : 50
- 4 levels 3 stabilité RT: ok ➔ inj. droite
- L_1 (level 1)
- L_2 (level 2)
- L_3 (level 3)
- L_4 (level 4)
- L_5 (level 5)
- L_3 (level 3) (vérification)
- Blanc-échantillon (aucun pic > LOD ➔ ok)
- Échantillon contrôle (FAPAS)
- Échantillon 1
- Échantillon 2
- Échantillon 3
- L_3 (level 3) (vérification des RT)
- Échantillon 4
- Échantillon 5
- Échantillon 6
- Échantillon 7
- L_3 (level 3) (vérification des RT)
- Etc.
- L_3 (level 3) (vérification des RT)
- H_2O/ACN 50 : 50
- Shutdown

11 Contrôle de la qualité

- Contrôle première ligne :
 Dans chaque séquence d'analyse, un échantillon FAPAS est utilisé comme échantillon de contrôle. La valeur fournie sur le certificat de cet échantillon sert de valeur de référence. Dans le cas où cet échantillon ne serait plus disponible, un échantillon dopé à 100 ppm (500 µl de solution stock d’histamine-2HCl à 1000 µg/ml) sera alors introduit dans la séquence.

- Contrôle deuxième ligne :
 Le contrôle de première ligne étant déjà un échantillon de référence, des contrôles de deuxième ligne ne sont pas nécessaires mais seront placés à la discrétion du chef de section.

- Contrôle troisième ligne :
 Quand cela est possible, le laboratoire est inscrit à différents tests interlaboratoires.
12 Calcul et rapportage

12.1 Evaluation des mesures

Les contrôles de chaque séquence d’analyse sont consignés sur le formulaire :
«LAB23 F543 - Suivi des analyses HPLC - Histamines».

Les critères d’acceptation sont :

12.1.1 La stabilité du système

Après avoir effectué le conditionnement des colonnes, injection en quadruple d’une solution de L₃ à 138,5 µg/g.

1. Il faut observer dans le chromatogramme 2 pics correspondant au pic de l’histamine et du standard de référence chromatographique (DBG) entre 0 et 15 minutes, approximativement aux temps de rétention suivants : 6,7 min (histamine) et 8,0 (DBG).

2. La différence des temps de rétentions relatifs de 2 injections successives d’histamine (par rapport au DBG) ne devra pas excéder 5 % selon la formule :

\[\left| \frac{Rt_{\text{hist}1} - Rt_{\text{hist}2}}{Rt_{\text{DBG}1} - Rt_{\text{DBG}2}} \right| \times 100 \leq 5\% \]

12.1.2 Droite d’étalonnage

- La droite d’étalonnage est une régression linéaire au sens des moindres carrés.
- L’intégration des pics se fait sur la hauteur/surface.
- Le critère à respecter est le suivant : Les points de l’étalonnage ne doivent pas dévier de plus de 10 % de la droite (pourcentage résiduel), pas de tolérance sur le R².
- Le pourcentage résiduel est calculé comme suit :

\[\left| \frac{\text{Valeur théorique} - \text{Valeur estimée}}{\text{Valeur théorique}} \right| \times 100 \]

Il est permis le cas échéant de retirer 1 point sur les 5.

12.1.3 Vérification de la dérive, du blanc et du FAPAS (ou du blanc dopé)

- Critère 1 : Dans le blanc, il ne peut pas y avoir, au temps de rétention de l’analyte, un pic de Hauteur supérieure à la LOD. Si détection d’un pic sur le blanc, retrancher la valeur sur l’échantillon de référence (ou sur le dopé).
- Critère 2 : Le pic de diméthylbiguanide doit aussi être présent.
- Critère 3 : La valeur de l’échantillon de référence doit respecter les spécifications du certificat.
- Critère 4 : Toutes les 5 injections, on procède à une injection d’une solution de L₃ à 138,5 µg/g.
La valeur de l’échantillon de référence doit respecter les spécifications du certificat.

Solution de vérification :

La valeur de l’analyte ne doit pas s’écarter de plus de 10 % de leur valeur nominale soit 138,5 µg/g (124,65-152,35µg/g) entre 2 vérifications successives et entre la première et la dernière vérification. Sinon, il faut tenir compte de cette dérive.

12.2 Expression des résultats

• Si le pic d’histamine est non détectable ou quantifiable, indiquer : < LOD ou < LOQ (valeur de la LOD ou de la LOQ respectivement < 25 et < 50 µg/g).
• Sinon indiquer la valeur trouvée en ppm (µg/g), le résultat de l’analyse étant corrigé sur le rendement.

13 Référence aux procédures, instructions, documents, formulaires ou listes y afférents

• LAB23 F543-AS19-Fiche de travail Histamine–HPLC : Formulaire de travail et de pesées des échantillons.
• LAB23 F543-AS20-Suivi des analyses HPLC–Histamines

Annexe

Pas d’application